Définitions

Dans ce chapitre nous allons nous intéresser à quelques notions qui n'ont rien à voir avec la technique pure et s'apparente plutôt à des mathématiques.

1. <u>Unités utilisées</u>

1.1 Système international

Grandeur	Unité système	Unité non standardisée	
	international	mais courante	
Puissance	Watt (W)	Cheval (ch) : 736W,	
		kilowatt (kW)	
Couple	Newton-mètre (N.m)	Kilogramme mètre (kg.m)	
Vitesse de rotation	Tours par seconde (tr/s)	Tours par minute (tr/min)	
	Radians par seconde		
	(rad/s). Note : 1 tour= 2π		
	rad.		

1.2 <u>Unités non métriques</u>

Utilisées principalement dans les pays anglo-saxons.

Grandeur	Unité (non métrique)	Rapport
Puissance	Cheval britannique (BHP : British Horse power)	1BHP=746W
Couple	Livre britanique-pied (lb.ft)	1 lb=453g=4,44N, 1ft=0,3043m. 1lb.ft=1,352N.m

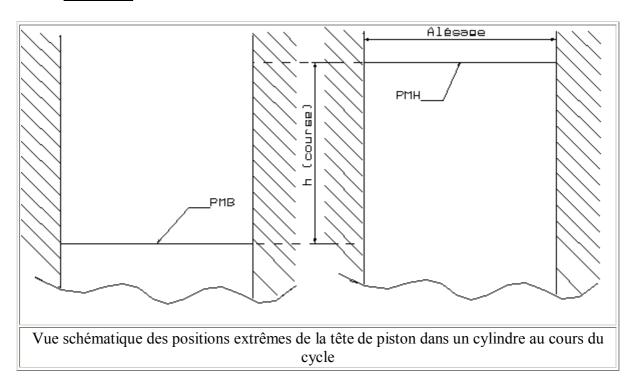
2. Définitions

2.1 Point mort bas

Niveau le plus bas du piston dans le cylindre, souvent noté PMB.

2.2 Point mort haut

Niveau le plus haut du piston dans le cylindre, souvent noté PMH.


2.3 Course

Différence de niveau entre le PMH et le PMB

2.4 Alésage

Diamètre du piston, où diamètre intérieur de la chemise, la différence n'étant que de quelques dixièmes de millimètres.

2.5 Illustration

3. Calcul de cylindrée

Le calcul d'une cylindrée revient à calculer le volume d'un cylindre de révolution.

La formule générale est $V=r^2\times h\times p$, où r est le rayon et h la hauteur du cylindre. Adapté à notre cas, la cylindrée se calcule par $V=\left(\frac{a}{2}\right)^2\times c\times p\times N$, où a est l'alésage, c la course et N le nombre de cylindres.

Les cotes sont habituellement exprimées en millimètres (mm), on obtient donc un résultat en mm³. Pour obtenir le résultat en cm³ il suffit de diviser par 1000, et par 10⁶ (un million) pour un résultat en dm³ (ou litres).

4. Calcul de puissance

S'effectue sur banc de puissance. La puissance elle-même n'existe pas en tant que telle, elle est donnée par la relation

P = C.W, avec P la puissance en watts, C le couple en N.m et ω la vitesse de rotation en radians / seconde. On peut aussi calculer P de la façon suivante :

$$P = C \times \frac{pN}{30}$$
, avec N en tr/min.

5. <u>Vitesse linéaire des pistons</u>

Calcul inutile dans la plupart des cas. On considère empiriquement qu'un moteur aura une tendance à la casse si la vitesse linéaire des pistons est couramment supérieure ou égale à 21m/s.

Considérant que, à chaque tour du moteur, le(s) piston(s) effectuera un aller-retour dans le cylindre, on a :

$$V_{niston} = 2h \times N$$

avec h la course en mètres et N le régime en tr/s. On peut aussi l'obtenir par la relation suivante, les régimes étant couramment exprimés en tr/min : $V_{piston} = \frac{2h \times N}{60}$.

6. <u>Calculs « statistiques »</u>

On peut effectuer quelques calculs de type statistique sur un moteur donné, connaissant ses cotes (alésage et course) et le nombre de cylindres.

6.1 Cylindrée unitaire

Cylindrée d'un seul cylindre. Soit V_u la cylindrée unitaire, on l'obtient par :

$$V_u = \frac{V}{N}$$

avec V la cylindrée totale et N le nombre de cylindres. On peut aussi, bien sûr, le calculer par la course et l'alésage, voir au point 3.

6.2 Rapport course / alésage

Soit h la course, et a l'alésage, le rapport course / alésage s'obtient comme son nom l'indique par :

$$R_{c/a} = \frac{h}{a}$$

On en dégage trois cas :

- $R_{c/a} > 1$, on parlera de moteur longue course ;
- $R_{c/a} = 1$, moteur carré;
- $R_{c/a} < 1$, moteur super-carré.

On en déduit le comportement du moteur : un moteur longue course aura tendance à posséder un couple intéressant mais un régime limité, alors que le moteur super-carré sera disposé à prendre des régimes élevés, au prix d'un couple inférieur.

6.3 Puissance spécifique

Puissance développée par litre de cylindrée.

$$P_s = \frac{P}{V}$$

avec P la puissance exprimée en watts (W) ou en chevaux, et V la cylindrée en litres.

Souvent, par « confort », on utilise le kW comme unité. Un cheval correspond à 736W. Pour ce calcul, on utilise la puissance maximale du moteur.

6.4 Couple spécifique

Couple développé par litre de cylindrée.

$$C_s = \frac{C}{V}$$

avec C le couple en newton-mètre (N.m) ou en kg.m, et V la cylindrée en litres.

L'unité normalisée est le N.m, et comme 1kg=9,81N (à Paris, variable selon le lieu), C(N.m)=9,81.C(kg.m).

6.5 Consommation spécifique

S'exprime en grammes de carburant par kW / h. Indique le rendement du moteur, par la consommation dudit moteur par heure à un régime donné.

La consommation spécifique est la plus faible quand le couple est maximal, c'est donc l'expression du rendement.

Pour information : Densité des carburants

Carburant	Formule chimique	Densité (kg/L)	Pouvoir calorifique (kJ/L)
Essence	C7 H16	0,755	44000
Gas oil	C21 H44	0,845	43000
Kerosène	De C10 H22 à C14 H30	0,77 à 0,83	43105

7. Exemple

Si on reprend toutes les relations énoncées plus haut, on obtient les résultats suivants en considérant le XUD7 :

	Grandeur	Valeur	Unité
	Alésage	80	mm
Grandeurs fournies	Course	88	mm
	Cylindrée	1769 (réellement	cm ³
		1769,345)	
	Couple max	110	N.m
	Puissance max	44,160	kW
	Régime max	5100	tr/min
		soit 85	tr/sec
Valeurs obtenues par calcul	Cylindrée unitaire	442,250	cm ³
	Rapport	1,1	
	course/alésage		
	Puissance spécifique	24,963	kW/l
	Couple spécifique	62,182	N.m/l
	Vitesse linéaire max	14,96	m/s